K nowledge Organiser: Chemistry, Rates of Reaction and Heat Changes Part A

12

1	Rate of reaction is the speed at which reactants turn intoproducts
2	Rate of reaction can be altered by changing concentration of solutions, particlesize of reactants
3	Reactions are typically faster at the start as concentration of reactants is highest
	Rates of reaction can be monitored by change in volume e.g.
4	gascollected in a gas syringe, change in massusing a mass balance or change in coloure.g. disappearing cross reaction.
5	Activation energy is the minimum energy reactants have to have whenthey collide for a new product to be made. It is shown as the 'hump' on reaction profiles .
6	Exothermicreactions -energy is transferred from stores of energy inchemical bonds to the surroundingswhen a new product is made. E.g. combustion reactions, neutralisation reactions
	Endothermicreactions -energy is transferred from the surrounding
7	tostores of energy in chemical bonds when a new product is made. E.g.photosynthesis, some precipitation reactions
	Increasing concentrationincreases reaction rate
8	As collisions between reactants is more likely
	Increasing surface area increases reaction rate as
9	more reactants can come into contact with each other.
10	Increasing pressureincreases reaction rate as particles are closer together so more likely to collide.

Increasing temperatureincreases reaction rate as particle movefaster with more energy so more likely to collide with enough energy.

Catalysts speed up reactions but are not used upby

them. Catalysts **lower** the **activation energy** needed in a reaction so have a lower **reaction profile**:

Catalysts are used to speed upindustrial processes e.g. platinum when making nitric acid from ammonia, iron in the manufacture of ammonia (Haber process).

14	Cars are fitted with catalytic converters, catalysts platinum and palladium are used to convert harmful gases into harmless ones. These metals are expensive but not used up.
	The human body relies on enzymes these are biological
15	catalysts. These are complex proteins that have a specific shape called anactive sitewhere the reactant molecules fit (substrate). Enzymes are shape specific working on one type of substrate (lock and key)
	Enzymes are sensitive totemperature and ph. Large changes
16	candenature (change shape) their molecules, meaning they stop working asthe substrate will no longer fit.
17	Reaction profiles model the energy change during a chemical reaction
18	Exothermic reaction profiles:heat energy of the reactants is greater thanthe products -heat energyisgiven outto the surroundings
	Endothermicreaction profile: heat energy of The reactants is less
19	than the products- heat energy is taken in from the surroundings

