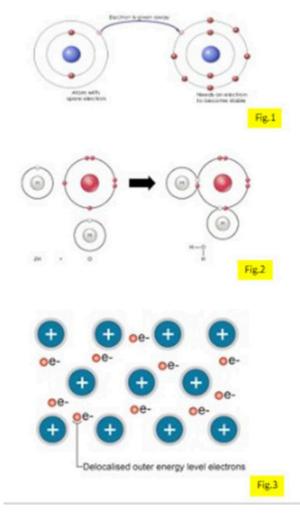

Knowledge Organiser: Chemistry, Key Concepts Part A

1	Atom is the smallest neutral part of an element that can take part in chemical reactions	neutron	Standard form	number	prefix	Word
2	Element is a substance made up of one type of atom	proton	1x10 ⁹	1,000,000,000	Giga (G)	Billion
	A proton is a small positively charged particle with a relative	electron	1x10 ⁶	1,000,000	Mega (M)	Million
3	mass of 1		1x10 ³	1,000	Kilo (K)	Thousand
4	A neutron is a small neutral particle with a relative mass of 1		1			
5	An electron is a small negatively charged particle with a relative atomic mass of 0.0005 (negligible)	electron shells	1x10 ⁻⁸	0.001	Milli (m) Micro (μ)	Thousandth Millionth
	Nucleus consists of protons and neutrons and is at the centre		1x10 ⁻⁹	0.000 000 001	Nano (n)	billionth
6	of every atom	SOLID SPHERE MODEL PLUM P	PUDDING MODEL	NUCLEAR MOD	DEL I	PLANETARY MODEL
7	Electron shell an area around a nucleus that can be occupied by electrons		•	. ^		•
8	Periodic Table is a chart of elements arranged in order of			0	4 /	
8	increasing atomic number Atomic number of an element is the number of protons in its		°	· XP	5	
9	nucleus		0)	
	Mass number of an element is the number of protons and					
10	neutrons in its nucleus		. THOMSON 6 7	ERNEST RUTHER	FORD	NIELS BOHR
	Isotope of an element has the same number of protons but a					
11	different number of neutrons	Electron configur	rations	(He)	-	an arrestant (A)
	Chemical properties are how a substance reacts with other					ss number (A) itons + neutrons)
12	substances	(i) (ii) (ii) (iii) (iii		(Ne) 23	NI-	
	Physical properties are how a substance responds to changes			11	Na←	- atom symbol
13	in force and energy	((Na)) ((Mg)) ((A)) ((S)) ((P		(Ar)	ator	nic number (Z)
	Relative atomic mass is the mean mass of an atom relative to			2		protons only)
14	the mass of an atom of carbon-12 which is assigned a mass of 12	Max electrons	in each shell 2		-, <u>1</u>	

	Duritui Mandalagy avvanged elements in auder of increasing
1	Dmitri Mendeleev arranged elements in order of increasing atomicmass in the first periodic table (fig.1)
2	He left gaps for in his table for elements that were
2	undiscovered.
3	He would swap the positions of elements in the table such as
3	iodine andtellurium suited to their chemical properties (fig.2)
	Mendeleev was able to make predictions about undiscovered
4	elementsusing the information he gathered about the
	properties of alreadydiscovered elements. The elements in the
5	modern periodic table are arranged in
	increasingatomic number
6	Elementsin a row are called periods in order of increasing
U	atomicnumber.
7	Elements with similar properties are in groups.
8	Non-metals are found to the righthand side of the table.
	Electrons are found on orbits/shells . The way in which they
9	arearranged is called the electron configuration.
9	The first orbit/shell can hold up to 2 electrons.
10	The second and third orbit/shell can hold up to 8 electrons.
10	Forexampleif chlorine has 17 electrons it will have:
	-2 electrons in the first orbit/shell-8 electrons in the second orbit/shell
11	-7 electrons in the second orbit/shell (fig.3)
	The number of occupied orbit/shells in an atom of an element
	isequal to the period number.
12	The number of electrons in the outer orbit/shell is equal to
	thegroup number.
13	


14	Group 0 elements have a full outer shell.
15	Electron configuration is directly related to the position of elements in the periodic table.
16	Electrons start to fill up their orbit/shells from thecentreof theatom to outwards.

Reiben	Gruppe L B ² O	Gruppe II. RO	Grappe III.	Gruppe IV. RH ^a RO ^q	Gruppe V. RH ³ R ² 0 ⁶	Gruppe VL RH2 RO ^a	Grappe VII. RH R*0*	Gruppe VIII.
1 2	H=1 Li=7	Be==9,4	B=11	C==12	N=14	0=16	F=19	
3 4 5	K=39	Ca -40	A1-27,3 44 65	Ti == 48	V=51	Cr== 52	Mn 55	Fe=56, Co=59, Ni=59, Ca=63
		8c==87	?Y1==88	Zr==90	Nb=54	Mo==96	-=100	Ra=101, Rh=104, Pd==106, Ag==108
7 8 9	Cs 133	Ba=137	In=113 ?Di=138	8n=118 70e=140	-8b → 122 -	Te=125	_ J= 127	
0	-	-	?Er-=178	?La=180		W=184	-	Os=195, Ir=197, Pt=:198, Au=:199
12	(Au-199)	Hg=200	Tl==204	Pb=207 Th=231	Bi == 205	U=240		

1	An ion is an atom that has lost or gained electrons which also means it will gain a positive or negative charge.
2	A positively charged ion is called a cation.
2	A negatively charged ion is called an anion.
	Metals can bond with non-metals to form an ionic substance.
3	Themetals will transfer an electron(s) to the non-metal. An electrostaticattraction will form between them-an ionic bond (fig.1) This forms a regular repeating arrangement called a lattice.
	Ionic compounds have a high melting/boiling points.
4	They can conduct electricity when molten or dissolved in water.
	Non-metals can share electrons to form a covalent bond. By
5	sharingelectronsthey gain a full outer shell (fig.2)
	Simple covalent compounds:
6	-have low melting/boiling pointssometimes can dissolve in waterdon't conduct electricity.
	Giant covalent compounds:
7	-have high melting/boiling points.-are insoluble in water.-do not conduct electricity apart from graphite.
	Metals outer electrons are normally lost leaving behind a positive
8	metalion. The metal cation sits in a 'sea' of delocalized electrons forming anelectrostatic attraction-metallic bonding (fig.3)
9	Metals: -have high melting/boiling pointsare insoluble in waterconduct electricity when solid or liquid.

Carbon different structural forms. These are called allotropes.
 The four allotropes of carbon are fullerenes, graphene, diamond andgraphite. These can be displayed via different types of bonding models.

1	Theatomic number tells us the number of protons in an atom
2	Themass number tells us the number of protons and neutrons in the nucleus of an atom
3	The number of electrons is the same as the atomic number in an element(not in an ion)
4	Isotopes are atoms with the same proton number but different number of neutrons
5	Relative atomic mass (RAM) is the mean mass of all of a substances isotopes
6	To work out RAM we Total mass of the atoms (% x mass) use the calculation: 100
7	Relative formula mass (RFM) is the sum of the RAM of all atoms in a molecule
8	Empirical formula is the simplest whole number ratio of atoms or ions ina substance
9	Ethene has the molecular formula C2H4 but empirical formula CH2
10	Sometimes empirical formula and molecular formula are the same e.g.H2O
11	Molecular formularepresents the actual number of atoms of each element in a molecule
12	To work outempirical formula follow these steps: 1. Divide the mass given in the question by the RAM 2. Divide all answers by the smallest answer from step 1 3. Write out the empirical formula using the ratio from step 2
13	A solute is a solid substance that can be placed into a solvent

14	A solvent is a fluid that can be mixed with a solute
15	A solution is where a solute is dissolved in a solvent
16	The mass of the solution is equal to the mass of the solvent + the solute. This is called the conservation of mass
17	The amount of solute dissolved in a solvent is called concentration
18	To calculate concentration in gdm ⁻³ use this equation: Concentration = mass of solute in g Volume of solution indm ³
19	Aclosed systemis one where no new substances are added orremoved in a reaction. These systems show the mass of thereactants = mass of products due to conservation of mass.
20	When gas can escape it is described as anon-enclosed system

Ca	Cl
10.0	17.8
40	35.5
$\frac{10.0}{40} = 0.25$	$\frac{17.8}{35.5} = 0.5$
$\frac{0.25}{0.25} = 1$	0.5 0.25 = 2
CaCl ₂	I Constant

Knowledge Organiser: Chemistry, Key Concepts Part D.2

21	Relative mass and balanced equations are used to work out the mass of a reactant/product
22	To calculate the mass of reactants or products follow these steps: 1. Write the balanced equation 2. Calculate the RFM of the substances needed 3. Find the ratio of molecules involved (using balancing numbers) 4. Work out the mass of 1g of reactant / product 5. Scale up or down to the mass given
23	1 mole is equal to 6.02 x 10 ²³ particles and is known as Avogadro constant Mass measured mass mass mass of 1 moles mass of 1 mole)
24	You can calculate the number of moles of a substance using the above equation
25	When a substance is added in excess , there is more than enough for thereaction to happen
26	Alimiting reactant is the substance that will run out in a chemicalreaction
27	The ratio of moles of each substance in a reaction is called stoichiometry

28	Theoretical yield is the amount of product that should form in achemical reaction
29	Actualyield istheamountofproductthatformsinrealityduetolossin the process
	Percentage yieldis worked out using:
30	Percentage yield = actual yield / theoretical yield
31	Atom economyis a method of showing how efficient a reaction is
32	Atom economyis worked out using the following equation: Atom economy= RFM of useful product Sum of RFM of all reactants

Calculate the mass of chlorine needed to make 53.4 g of aluminium chloride.

Write the balanced	equation	AS.	I + 3CI, → ZAICI,	
Calculate relative fo of the substances n		33.50	Cl ₂ = 2 × 35.5 = 71 AICl ₃ = 27 + (3 × 35.5	6) = 133.5
shown in the equat	ion).	makes	2 AlCl ₁ 2 × 133.5 = <u>267</u> g A	
			product. (Here we w	ant 1 g of
the product becaus	e that's the h	1855 WE	know already.)	
the product becaus 267			know already.) 267 g AICI,	
		makes	267 g AICI,	+ 26