

1	Whenever anything happensenergy is transferred.
2	The energy transferred by a force is called work done.
3	Work done (J)= force (N) x distance moved in the direction of the force (m). $E = F \times d$
4	Power is the rate at which energy is transferred
5	Power is measured inwatts (W)
6	Power(W) = work done (J) ÷time taken (s) P = E ÷t
7	Contact forces occur when twoobjects are touching.
8	Examples of contact forces include tensionandair resistance
9	Non-contact forces occurwithout objects touching, they can act between two objects that are far apart from one another.
9	Examples of non-contact forces include gravity and magnetism
10	For non-contact forces, theforce becomes weaker the further the objects are from each other.
11	Vector diagrams can be used to find the resultant force of two forces acting on an object at an
12	angle to each other. (higher tier only) Vector diagrams can also be used to find the twocomponent forces acting on an object when you
13	know the resultant force. A turning force is called a moment
14	The sizeof a moment depends on the size of the force applied and how far from the pivot the force is applied.
15	The pivot is the point wherethe rotation (turning) takes place.
16	Moment of a force (Nm) = force(N) x distance (m)
17	When a system involving rotational forces isin equilibrium the sum of clockwise moments = the
18	sum of anticlockwise moments The rotational effect of a fore can also betransmitted by gears
19	

