1	Wavestransfer energy.
2	A longitudinal wave oscillates in the same direction that energy is transferred (parallel).
3	An example of a longitudinal wave is sound. Longitudinal waves need particles to travel.
4	A transverse wave oscillatesperpendicular (at a 90° angle) to the direction of energy transfer.
5	An example of a transversewave is microwaves . Transverse waves do not need particles to travel.
6	All wavesin the electromagnetic spectrum are examples of transverse waves.
7	The frequency ofa wave is the number of complete waves that pass a point each second .
8	Thefrequency of a wave is measured in hertz (Hz). Forsound waves, the frequency is related to the pitch. A high frequency =
9	high pitch sound. A low frequency = a low pitch sound. The periodis the length of time it takes one wave to pass a given point.
10	The wavelengthis the distance from one peak(or trough) to the very next
11	peak(or trough) and is measured in metres (m)The amplitude of a wave is themaximum distance of a point on the wave
12	from it's rest position and is also measured in metres (m). For soundwaves, the amplitude is related to volume. Greater amplitude means a louder volume.
13	The velocityof a wave is how fast the wave is travelling in it's direction of energy transfer. Waves travel at different speeds in different materials.
14	Speed = distance ÷time
15	

16	Sound travels at 330 m/s in air
17	Wavevelocity (m/s) = frequency (Hz) x wavelength (m) V = f x λ
18	Wavescan change direction when they travel through a different medium with a different density. This is called refraction
19	Whena wave 'bounces off' a surface this is called reflection.
20	When a wave passes through a material and is not absorbed or reflected it is transmitted .
21	When a wave transfersall ofits energy to an object or material it is absorbed.

incident ray

 λ = wavelength

1	When a sound wave reaches a solid object, some of the energy it is transferring is reflected and some is transmitted through the solid or absorbed by it. (higher tier only)
2	Sound waves cause the particles in a solid to vibrate and the vibrations can
	be passed on both as longitudinal and as transverse waves.
3	Inhuman ears, vibrations caused by sound waves are passed on through parts of the ear until they are detected and and converted to electrical
	impulses that travel to the brain.
4	
4	The eardrum isa thin membrane that can vibrate due to sound waves.
5	The cochlea is found inside the ear and is a coiled tube containing liquid.
6	Ahealthy cochlea can detect sounds from 20Hz to 20000Hz.
7	Ultrasound is sound made by waves with a frequency greater than 20000Hz
8	Ultrasound scans can be used to make images of things inside the body.
9	Other uses of ultrasound include sonar, cleaningand treatment of medical conditions such as kidney stones.
10	Infrasound is sound made by waves witha frequency less than 20Hz.
44	Infrasound waves travel further than higher frequency waves before they become to faint to detect.
11	Natural events such as volcanic eruptions and earthquakes create
12	infrasound waves.
	The energyreleased by an earthquake can travel through the Earth as a
13	longitudinal P wave or as a transverse S wave.

