| 1 | A scalar quantity has only a magnitude but a vector quantity has both a magnitude and a direction . | |----|---| | 2 | Anexample of a scalar quantity is speed and an example of a vector quantity is velocity (which is speed in a given direction). | | 3 | The standardunit for time is seconds (s) | | 4 | The standard unit for distance is metres (m) | | 5 | Speed = distance ÷time | | 6 | The standard units for both speed and velocity are m/s | | 7 | A typical walking speed is 1.5 m/s | | 8 | A typical running speed is 3 m/s | | 9 | A typical cycling speed is 6 m/s | | 10 | On a distance—time graph, a flat line tells you that the object is not moving (stationary). A steeped, straight line tells you that the object is travelling a constant or steady speed. | | 11 | To calculate the speed or velocity from a distance-time graph you need to calculate the gradient of the line. | | | Acceleration is the rate of change of velocity andthe standard | | 12 | unit for acceleration is m/s2 Acceleration = (final velocity-initial velocity) ÷time taken | | 13 | | | 14 | Accelerationcan also be calculated using the equation Final velocity squared –initial velocity squared= 2 x acceleration x distance V2–U2= 2ax | | 15 | A flat, straight line on a velocity—time graph tells you that the object is travelling at a constant or steady speed. A steeped, straight line tells you that the object is accelerating. | | 16 | To calculate the distance travelled from a velocity—time graph you need to calculate the area under the graph. |