| 1  | A <b>scalar</b> quantity has only a <b>magnitude</b> but a <b>vector</b> quantity has both a <b>magnitude</b> and a <b>direction</b> .                                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Anexample of a scalar quantity is <b>speed</b> and an example of a vector quantity is <b>velocity</b> (which is speed in a given direction).                                                                    |
| 3  | The standardunit for <b>time</b> is seconds <b>(s)</b>                                                                                                                                                          |
| 4  | The standard unit for <b>distance</b> is metres <b>(m)</b>                                                                                                                                                      |
| 5  | Speed = distance ÷time                                                                                                                                                                                          |
| 6  | The standard units for both <b>speed</b> and <b>velocity</b> are <b>m/s</b>                                                                                                                                     |
| 7  | A typical walking speed is 1.5 m/s                                                                                                                                                                              |
| 8  | A typical running speed is 3 m/s                                                                                                                                                                                |
| 9  | A typical cycling speed is 6 m/s                                                                                                                                                                                |
| 10 | On a <b>distance—time</b> graph, a <b>flat line</b> tells you that the object is not moving ( <b>stationary</b> ). A steeped, straight line tells you that the object is travelling a constant or steady speed. |
| 11 | To calculate the <b>speed</b> or velocity from a <b>distance-time graph</b> you need to calculate the <b>gradient</b> of the line.                                                                              |
|    | Acceleration is the rate of change of velocity andthe standard                                                                                                                                                  |
| 12 | unit for acceleration is m/s2  Acceleration = (final velocity-initial velocity) ÷time taken                                                                                                                     |
| 13 |                                                                                                                                                                                                                 |
| 14 | Accelerationcan also be calculated using the equation Final velocity squared –initial velocity squared= 2 x acceleration x distance V2–U2= 2ax                                                                  |
| 15 | A flat, straight line on a velocity—time graph tells you that the object is travelling at a constant or steady speed. A steeped, straight line tells you that the object is accelerating.                       |
| 16 | To calculate the distance travelled from a velocity—time graph you need to calculate the area under the graph.                                                                                                  |

